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Abstract

The present study supplies a new approach to calculate thermal performance of a singular fin with variable thermal

properties. With discrete model, the singular fin can be divided into many sections. Then, each section can be combined

together to obtain the whole solution of the fin by recursive numerical formulation. The recursive formulas for both

conditions with and without heat transfer on fin tip are derived in the present study. Finally, several examples including

composite and boiling mode of a fin have been successfully simulated to demonstrate the validity of the present

approach.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The heat sink assembly is a commonly used and pow-

erful apparatus for heat removal in today�s thermal engi-
neering. This apparatus is mainly designed to remove

heat effectively from the hot equipment to environment.

In all types of heat sink assembly, fins play a very impor-

tant role. The analysis of fin is of the interest that the ex-

tended surface can promote heat transfer. During the

process for designing fins, material weight and manufac-

turing cost are the first to be concerned.

In 1972, Kern and Kraus [1] presented a series of

study on extended surface. And Kraus [2] presented a
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fin literature consists of what scholars had done for

the past 65 years. Generally speaking, the thermal

behavior by using fin dissipation in real world is compli-

cated because of its variable thermal properties. For

example, heat transfer coefficient on fin surface and ther-

mal conductivity of fin material are usually temperature-

dependent and location-dependent. And fin material is

neither homogeneous nor isotropic. Also, fin profile is

varied with different demands and hence fin cross-sec-

tion area may be uniform or step changed. Gardner [3]

is the first one to solve this problem with constant heat

transfer coefficient and thermal conductivity. By using

the simplified one-dimensional fin model, optimum solu-

tion can be determined easily and that is widely used in

recent studies and industrial practice. In the thermal

analysis of a fin behavior, one-dimensional approach is

usually limited for some specified cases. It is found

that one-dimensional model of fin performance is

valid as transverse Biot number is less than unity by
ed.
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Nomenclature

a normal fin cross-section area, m2

c dimensionless parameter for exponential

increase in heat transfer coefficient, defined

in Eq. (37)

h heat transfer coefficient, W/m2 K

k thermal conductivity, W/m K

k0 thermal conductivity at T0, W/m K

l length of fin, m

m fin parameter, defined in Eq. (1)

M dimensionless parameter, defined in Eq. (3)

N dimensionless parameter, defined in Eq. (30)

p perimeter of fin, m

q heat transfer rate of fin, W

R thermal resistance of singular fin, K/W

T temperature of fin surface, K

V fin volume, m3

W fin parameter, defined in Eq. (5)

x distance from fin base, m

Greek symbols

c fin width, m

d fin thickness, m

e slope of temperature-dependent thermal

conductivity curve

h temperature difference between fin surface

and environment, K

l thermal transmission ratio, defined as the

reciprocal of thermal resistance, W/K

q dimensionless parameter for heat transfer

coefficient, defined in Eq. (39)

Superscripts

r dimensionless parameter for heat transfer

coefficient, defined in Eq. (39)

m power of temperature difference

n power of characteristic length of fin

Subscripts

0 base

av. average

b base temperature difference in excess of sat-

urated temperature

Copper material of copper

c characteristic length

Dural. material of Duralumin

d dryout location

e fin tip

f film boiling location

i an index for discrete model, i = 1,2,3, . . .
j an index refers to the type of boiling, defined

in Eq. (39)

l fin length

n number of sections for discrete model

a dimensionless parameter for exponential in-

crease in heat transfer coefficient, defined in

Eq. (37)

b dimensionless parameter for exponential

increase in heat transfer coefficient, defined

in Eq. (36)
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Irey [4]. To expand this valid range, an improved

one-dimensional solution was proposed by Aparecido

and Cotta [5] who modified those expressions as

simple as classical ones but accuracy is significantly

improved.

Considering a fin with variable thermal conductivity,

Aziz and Huq [6] presented a perturbation solution and

check the accuracy of the solution with numerical

method. Concerning arbitrary variable heat transfer

coefficient on fin surface, Ma et al. [7] applied Fourier

series approach to investigate a two-dimensional rectan-

gular fin. Laor and Kalman [8] considered a power-law

type, temperature-dependent heat transfer coefficient,

the solution could be solved numerically by a well recog-

nized technique. With a prescribed heat flux at fin end in

one-dimensional model, Liaw and Yeh [9] calculated

temperature distribution and heat transfer rate by solv-

ing hypergeometric function. The heat transfer coeffi-

cient is assumed to vary with a power-law-type

formula. Heat transfer from the fin tip was also con-
cerned. Results from Liaw and Yeh [9] are also com-

pared with experimental data. In 1996, Yeh [10]

presented a modified one-dimensional solution for fin

optimization.

The purpose of this study is to focus on the longitu-

dinal fin where fin parameters such as heat transfer

coefficient and thermal conductivity can be tempera-

ture-dependent or position-dependent functions. In this

model, the whole fin is separated into many sections

where each section can have its local heat transfer co-

efficient and local thermal conductivity, h1 and k1, h2
and k2, h3 and k3, etc. Although all equations quoted

from sections are based on constant thermal properties,

each section can be combined together to obtain the

whole solution of the fin by recursive numerical formu-

lation. And the close form solution is easily and

straightly yielded by numerical iterative method. By

substituting the variable functions into discrete model,

the thermal behavior of fin including temperature distri-

bution and heat transfer rate can be obtained.
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2. Theoretical analysis

A singular fin with its geometry, material properties,

and convective condition to the environment is shown in

Fig. 1. And one-dimensional steady state solution

including three different boundary conditions on fin tip

has been summarized by Incropera and DeWitt [11]

shown in Table 1. These results will be utilized into

the derivation of generalized recursive formula appeared

in the following sections.

2.1. Insulated fin tip

(1) One uniform section where 0 5 x 5 l1.

Based on Fig. 2(a) as fin has one uniform section, the

governing equation is shown as

d2h
dx2

� m2
1h ¼ 0; 0 5 x 5 l1 ð1Þ

where m2
1 ¼

h1p
k1a

And boundary conditions are set as

hð0Þ ¼ h0; and
dh
dx

����
x¼l1

¼ 0 ð2Þ

The temperature distribution is obtained as

hðxÞ ¼ h0 �
cosh½m1ðl1 � xÞ�
coshðM1Þ

ð3Þ
Fig. 1. Models for longit

Table 1

Temperature distribution and heat loss for fins for constant cross-s

transfer coefficient hav.

Case Tip condition, x = l Temperature distribution, h(x)

A. Convective heat transfer

�k
dh
dx

jx¼l ¼ hhðlÞ
h0 �

cosh½mðl� xÞ� þ N sinh½mðl� xÞ
coshðMÞ þ N sinhðMÞ

B. Adiabatic
dh
dx

jx¼l ¼ 0 h0 �
cosh½mðl� xÞ�
coshðMÞ

C. Prescribed temperature

h(l) = hl

fh0 sinh½mðl� xÞ� þ hl sinhðmxÞg �
si

Where h(0) = T0 � T1 = h0, m ¼
ffiffiffiffiffiffiffi
hav:p
ka

q
, M = m Æ l, W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hav:pka

p
and
where M1 = m1 Æ l1.

And the temperature difference on fin tip is

h1 ¼ h0 �
1

coshðM1Þ
ð4Þ

The solution of heat transfer rate in one uniform section,

l1, is

q0 ¼ �k1a
dh
dx

����
x¼0

¼ h0W 1 tanhðM1Þ ð5Þ

where W 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1k1pa

p
.

(2) Two uniform sections where 0 5 x 5 (l1 + l2).

Model where fin is divided into two uniform sections

is shown in Fig. 2(b). As already indicated, heat transfer

coefficients and thermal conductivities can be specified

with different values of h1, h2 and k1, k2.

(a) For the section of 0 5 x 5 l1.

With a prescribed temperature difference, h1, at the
end of the first section, the governing equation of section

l1 is given as

d2h
dx2

� m2
1h ¼ 0; 0 5 x 5 l1 ð6Þ

where m2
1 ¼

h1p
k1a
.

And boundary conditions are set as

hð0Þ ¼ h0; and hðl1Þ ¼ h1 ð7Þ
udinal fin structure.

ectional area a, perimeter p, thermal conductivity k, and heat

Temperature of tip,

h(l) = htip

Fin heat transfer,

q ¼ �ka dh
dx jx¼0

�
h0 �

1

coshðMÞ þ N sinhðMÞ h0W
tanhðMÞ þ N
1þ N tanhðMÞ

� �

h0 �
1

coshðMÞ h0W tanhðMÞ

1

nhðMÞ hl W 0
h0 coshðMÞ � hl

sinhðMÞ

N ¼ he
mk.



Fig. 2. Discrete models for fin tip with or without heat transfer: (a) one section; (b) two sections; (c) three sections; (d) N sections.

H.-S. Kou et al. / International Journal of Heat and Mass Transfer 48 (2005) 2266–2277 2269
The temperature distribution is obtained as

hðxÞ ¼ h0 sinh½m1ðl1 � xÞ� þ h1 sinhðm1xÞ
sinhðM1Þ

ð8Þ

where M1 = m1 Æ l1.

And both of the heat transfer rates at x = 0 and x = l1
are obtained in the form

q0 ¼ W 1

h0 coshðM1Þ � h1
sinhðM1Þ

ð9Þ
q1 ¼ W 1

h0 � h1 coshðM1Þ
sinhðM1Þ

ð10Þ
where W 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1k1pa

p
.

And the net heat transfer rate perpendicular to the axis

of the first section, l1, is given as

q0 � q1 ¼ ðh0 þ h1ÞW 1 tanh
M1

2

� �
ð11Þ
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(b) For the section of l1 5 x 5 (l1 + l2).

Section l2 of the fin can be determined in the same

manner. The governing equation and boundary condi-

tions are expressed as

d2h
dx2

� m2
2h ¼ 0; l1 5 x 5 ðl1 þ l2Þ ð12Þ

where m2
2 ¼

h2p
k2a
.

And boundary conditions are set as

hðl1Þ ¼ h1; and
dh
dx

����
x¼l1þl2

¼ 0 ð13Þ

The temperature distribution is obtained as

hðxÞ ¼ h1 �
cosh½m2ðl1 þ l2 � xÞ�

coshðM2Þ
ð14Þ

where M2 = m2 Æ l2.

And temperature on fin tip is

h2 ¼ h1 �
1

coshðM2Þ
ð15Þ

The heat transfer rate in the second section, l2, is

q1 ¼ h1W 2 tanhðM2Þ ð16Þ

where W 2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2k2pa

p
.

(c) For the section of 0 5 x 5 (l1 + l2).

Replacing Eq. (16) into Eq. (11), then Eq. (11) can be

obtained as

q0¼ h0W 1 tanh
M1

2

� �
þh1 W 1 tanh

M 1

2

� �
þW 2 tanhðM 2Þ

� �
ð17Þ

And from Eq. (9), h1 can be rewritten as

h1 ¼ h0 coshðM1Þ �
q0 sinhðM1Þ

W 1

ð18Þ

Finally, by substituting Eq. (18) into Eq. (17), the

heat transfer rate on fin base, q0, becomes

q0 ¼ h0W 1

tanhðM1Þ þ
W 2

W 1

tanhðM2Þ

1þ tanhðM1Þ
W 2

W 1

tanhðM2Þ
ð19Þ

By substituting Eq. (18) into Eq. (15), it derives

h2 ¼ h0
coshðM1Þ
coshðM2Þ

� q0 sinhðM1Þ
W 1 coshðM2Þ

ð20Þ

Based on Eq. (19), heat transfer rate from fin surface

to surrounding is determined by incorporating the local

heat transfer coefficients h1 and h2 and conductivities k1
and k2 which are included inM1,M2,W1, andW2. Once
one of these two parameters, h0 and q0, is known in ad-
vance, the other one can be obtained by Eq. (19). The

temperature difference h1 can be determined by Eq.

(18), and then heat transfer rate q1 can also be obtained

from Eq. (10).

(3) Three uniform sections where 0 5 x 5 (l1 +

l2 + l3).

The model including three different sections is de-

picted in Fig. 2(c). Similar to the previous derivation,

the solution procedures for these three sections, l1, l2
and l3, are in the same manner.

Here, solutions for three sections, l1, l2 and l3, are

obtained, respectively, as

q0 � q1 ¼ ðh0 þ h1ÞW 1 tanh
M1

2

� �
ð11Þ

q1 � q2 ¼ ðh1 þ h2ÞW 2 tanh
M2

2

� �
ð21Þ

q2 ¼ h2W 3 tanhðM3Þ ð22Þ
Summation of Eqs. (11), (21), and (22) can obtain the

heat transfer rate on fin base as :

q0 ¼ h0W 1 tanh
M1

2

� �

þ h1 W 1 tanh
M1

2

� �
þ W 2 tanh

M2

2

� �� �

þ h2 W 2 tanh
M2

2

� �
þ W 3 tanhðM3Þ

� �
ð23Þ

As mentioned above, heat transfer rate, q0, in Eq.

(23) has to be expressed in terms of h0. Based on Eq.
(18), similar solution procedure of temperature from

the second section is introduced here as

h2 ¼ h1 coshðM2Þ �
q1 sinhðM2Þ

W 2

ð24Þ

Substituting Eqs. (10), (18) and (24) into Eq. (23), it

can be rearranged as

q0 ¼ h0W 1

�
tanhðM1Þ þ W 2

W 1

tanhðM2Þ þ W 3

W 2
tanhðM3Þ

1þ tanhðM2Þ W 3

W 2
tanhðM3Þ

" #

1þ tanhðM1Þ W 2

W 1

tanhðM2Þ þ W 3

W 2
tanhðM3Þ

1þ tanhðM2Þ W 3

W 2
tanhðM3Þ

" #

ð25Þ

(4) N uniform sections where 0 5 x 5 (l1 + l2 +

l3 + � � � + ln).
From the recursive relation among Eqs. (5), (19), and

(25), It is noted that the same manner can be extended

for more sections which are shown in Fig. 2(d). For

example, a fin can be separated into one, two, three,

or four sections and the heat transfer results can be clev-

erly manipulated in the following form.
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q0 ¼ h0W 1 tanhðM1Þ for one section ð5Þ

q0 ¼ h0W 1

tanhðM1Þ þ W 2

W 1
tanhðM2Þ

1þ tanhðM1Þ W 2

W 1
tanhðM2Þ

for two sections

ð19Þ

q0 ¼ h0W 1

tanhðM1Þ þ W 2

W 1

tanhðM2Þ þ W 3

W 2
tanhðM3Þ

1þ tanhðM2Þ W 3

W 2
tanhðM3Þ

" #

1þ tanhðM1Þ W 2

W 1

tanhðM2Þ þ W 3

W 2
tanhðM3Þ

1þ tanhðM2Þ W 3

W 2
tanhðM3Þ

" #

for three sections ð25Þ

q0 ¼ h0W 1

�

tanhðM1Þþ W 2

W 1

tanhðM2Þþ W 3

W 2

tanhðM3Þþ
W 4
W 3
tanhðM4Þ

1þtanhðM3Þ
W 4
W 3
tanhðM4Þ

� �

1þ tanhðM2ÞW 3

W 2

tanhðM3Þþ
W 4
W 3
tanhðM4Þ

1þtanhðM3Þ
W 4
W 3
tanhðM4Þ

� �
8>><
>>:

9>>=
>>;

1þ tanhðM1ÞW 2

W 1

tanhðM2Þþ W 3

W 2

tanhðM3Þþ
W 4
W 3
tanhðM4Þ

1þtanhðM3Þ
W 4
W 3
tanhðM4Þ

� �

1þ tanhðM2ÞW 3

W 2

tanhðM3Þþ
W 4
W 3
tanhðM4Þ

1þtanhðM3Þ
W 4
W 3
tanhðM4Þ

� �
8>><
>>:

9>>=
>>;

for four sections ð26Þ

Based on the above derivation, a numerical recursive

formula can be observed to simulate a fin with more sec-

tions by just substituting
tanhðMiÞþ

W iþ1
W i

tanhðMiþ1Þ

1þtanhðMiÞ
W iþ1
W i

tanhðMiþ1Þ
into

tanhðMiÞ.
Although all the derived results are based on the con-

stant properties, all the results presented in this paper

have been arranged into a similar formulation and hence

a recursive formula can be observed and used to expand

a fin into more sections. Finally, the results can be

solved through numerical approach. This is the most

precious contribution of the present paper.

Based on the previous derivation, the distributions of

temperature and heat transfer rate at each section can be

rearranged and written as the form

hi ¼ hi�1 coshðMiÞ �
qi�1 sinhðMiÞ

W i
; where i ¼ 1; n

ð27Þ

qi ¼ qi�1 � ðhi�1 þ hiÞW i tanh
Mi

2

� �
; where i ¼ 1; n

ð28Þ

It is noted that the heat transfer rate on the fin tip, qn,

obtained from Eq. (28) will approach zero. In addition

to Eq. (27), the temperature on fin tip, hn, can also be
solved directly from the following

hn ¼ hn�1 �
1

coshðMnÞ
ð29Þ
2.2. Convection boundary condition on fin tip

(1) One uniform section where 0 5 x 5 l1.

If the heat transfer from fin tip is also considered, the

heat transfer rate on the fin base is obtained as

q0 ¼ h0W 1

tanhðM1Þ þ N 1

1þ tanhðM1ÞN 1

� �
ð30Þ

where W1, M1 are the same as before, and N 1 ¼ he
m1k1

.

(2) Two uniform sections where 0 5 x 5 (l1 + l2).

Following the same procedures, the heat dissipation

of the fin containing two uniform sections is determined

as

q0 ¼ h0W 1

tanhðM1Þ þ
W 2

W 1

tanhðM2Þ þ N 2

1þ tanhðM2ÞN 2

� �

1þ tanhðM1Þ
W 2

W 1

tanhðM2Þ þ N 2

1þ tanhðM2ÞN 2

� � ð31Þ

(3) Three uniform sections where 0 5 x 5 (l1 +

l2 + l3).

Similarly, the total heat dissipation for a fin including

three uniform sections is determined as

q0 ¼ h0W 1

�

tanhðM1Þ þ W 2

W 1

tanhðM2Þ þ W 3

W 2

tanhðM3ÞþN3
1þtanhðM3ÞN3

h i
1þ tanhðM2Þ W 3

W 2

tanhðM3ÞþN3
1þtanhðM3ÞN3

h i
8<
:

9=
;

1þ tanhðM1Þ W 2

W 1

tanhðM2Þ þ W 3

W 2

tanhðM3ÞþN3
1þtanhðM3ÞN3

h i
1þ tanhðM2Þ W 3

W 2

tanhðM3ÞþN3
1þtanhðM3ÞN3

h i
8<
:

9=
;

ð32Þ

(4) N sections where 0 5 x 5 (l1 + l2 + l3 + � � � + ln).
Based on Eqs. (30)–(32), it can be observed that Ni

appeared in i sections will be extended to

W iþ1

W i

tanhðMiþ1Þ þ Niþ1

1þ tanhðMiþ1ÞNiþ1

� �
if the more i + 1 sections

are needed. The heat transfer rate of the whole fin, q0,

can also be solved with a known value of h0 or vice ver-
sa. For plotting the distributions of temperature and

heat transfer rate, the individual term of hi and qi can

be written by following the same procedures as

hi ¼ hi�1 coshðMiÞ �
qi�1 sinhðMiÞ

W i
; where i ¼ 1; n

ð27Þ

qi ¼ qi�1 � ðhi�1 þ hiÞW i tanh
Mi

2

� �
; where i ¼ 1; n

ð28Þ

It is noted that the temperature on fin tip, hn, can also
be solved directly from the following

hn ¼ hn�1 �
1

coshðMnÞ þ Nn sinhðMnÞ
ð33Þ



Table 2

Constant for simplified equation from vertical surface to air at

atmospheric pressure, according to [8,12]

Type of flow hav., m, n

Free convection Forced convection

Laminar flow 1.42, 0.25, 0.25 25 5 hav. 5 250, 0, 0.5

Turbulence flow 1.31, 0.333, 0 25 5 hav. 5 250, 0, 0.2
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3. Solution procedures

In solving the fin problem with variable thermal

properties, the fin is firstly separated into many sections

where each section has its constant properties and sec-

ondly the heat transfer results of the fin can be solved

by a numerical algorithm. A numerical recursive for-

mula has been obtained during the derivation of the

solution of the fin problem with many sections where

each section has its constant properties.

Using this model, a more accurate solution of a fin

problem with variable thermal properties can be investi-

gated by simply separating the fin into more sections.

The numerical approach is executed in reverse direction

by recursive formula. For the case with insulated fin

tip, determine the value of
tanhðMiÞ þ W iþ1

W i
tanhðMiþ1Þ

1þ tanhðMiÞ W iþ1
W i
tanhðMiþ1Þ

from the last term and then substitute it into

tanhðMiÞ. As to the case with convective boundary

condition on fin tip, determine the value of

W iþ1

W i

tanhðMiþ1Þ þ Niþ1

1þ tanhðMiþ1ÞNiþ1

� �
from the last term and sub-

stitute it into Ni. Continue these steps following in back-

ward substitution until the simplest form like Eq. (5) or

Eq. (30) is obtained. Finally, the heat transfer rate of the

whole fin, q0, can be solved with a known value of h0 or
vice versa.

In solving the present problem, parameters Wi, Mi,

and Ni must be calculated in advance. For this discrete

model, the variable heat transfer coefficient h can be di-

vided into some local constant heat transfer coefficients

h1, h2, h3, etc. to approximate the function of h. In the

iterative calculation, the obtained temperature distribu-

tion, h0, h1, h2, h3, . . . ,he, will be substituted into the
function of h to generate local heat transfer coefficients

for the next iteration. And calculations will be stopped

as the relative error of fin tip temperature within the last

two iterations is less than 10�4. This approach may also

be applied with variable thermal conductivity k for fin

by introducing k1, k2, k3, k4, . . . into Mi, and Wi.
Table 3

Comparison between the present study and Liaw and Yeh [9]

Distance, x 0.0 0.2

Temperature distribution, hn
Values of m and cases

m = �0.25 The present study

[9]

0.624 0.638

0.624 0.638

m = 0.25 The present study

[9]

0.668 0.680

0.667 0.679

m = 2.0 The present study

[9]

0.752 0.760

0.751 0.760

m = 3.0 The present study

[9]

0.752 0.760

0.751 0.760
4. Results and discussion

In order to perform the advantage of this mathemat-

ical model, an example is introduced to simulate a longi-

tudinal fin that is under free convection and forced

convection, separately. For the convection mechanism,

variable heat transfer coefficient can be expressed in

the form

h ¼ hav:
hm

lnc
ð34Þ

where h is fin surface temperature in excess of environ-
ment. The values of hav., m and n depend on properties

of the liquid and flow mechanism [8,12]. Under free

convection in laminar flow, values of m and n are all

equal to 0.25, and hav. is 1.42. Under free convection

in turbulent flow, m = 0.333, n = 0, and hav. = 1.31. As

to forced convection, the heat transfer coefficient is inde-

pendent of the surface temperature but varied only by lc.

Therefore, m = 0. and n = 0.5 for laminar flow and

n = 0.2 for turbulent flow and typical value of hav. is

set between 25 W/m2 K to 250 W/m2 K. The data de-

scribed above are listed in Table 2. Besides, m and n

are set to 0 for the ideal case of a constant heat transfer

coefficient.

Furthermore, here defines a parameter of thermal

resistance R which is expressed as

R ¼ h0
q0

ð35Þ
0.4 0.6 0.8 1.0 Range of error, %

0.681 0.754 0.859 1.000 0.000

0.681 0.754 0.859 1.000

0.717 0.780 0.873 1.000 0.001

0.716 0.780 0.873 1.000

0.786 0.832 0.901 1.000 0.001

0.786 0.832 0.901 1.000

0.786 0.832 0.901 1.000 0.001

0.786 0.832 0.901 1.000



Table 4

Comparison between the present study and Ma et al. [7]

The present

study

Ma et al. [7] Error

Thermal

transmission ratio, l
0.1150 0.1150 0.0%

Fin normal cross-section area, a, is 10 mm · 10 mm and fin

thermal conductivity k is taken to be 100 W/m K, heat transfer

coefficient h is assumed to be 50 W/m2 K along the first 10 mm

of its length, and 100 W/m2 K along the remaining 30 mm.
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The value of R is also considered as the performance

of fin, the less value of R indicates the better perfor-

mance of fin.

For validating the present approach, the study

treated from Liaw and Yeh [9] is introduced here for

comparison. From Table 3, both results are quite similar

where the maximum difference is only 0.001 with m =

�0.25, 0.25, 2.0, and 3.0. In addition, Ma et al. [7] used
Fourier series approach to investigate a rectangular fin

with arbitrary heat transfer coefficient on fin surface.

For comparison with the present study by setting the

same fin geometry and convective condition, the results

shown in Table 4 by thermal transmission ratio, l, de-
Fig. 3. Distribution of h, h, and q on location x with input constant
l = 0.05 m, fin thickness is 0.01 m, fin width is 0.01 m and material i

hav. = 1.31 W/m
2 K, and m = 0.333, n = 0; (b), (d), (f) for forced conv
fined in Ref. [7] which is the reciprocal of thermal resis-

tance are identical.
temperature difference h0 = 80 K for fin base, where fin length,

s Duralumin, k = 164 W/m K; (a), (c), (e) for free convection,

ection, hav. = 25, and m = 0, n = 0.2.



Fig. 5. Temperature distribution of longitudinal rectangular fin

for variable heat transfer coefficients, where l = 0.1016 m (4 in.)

long, c = 0.3048 m (1 ft) wide, d = 0.003175 m (0.125 in.) thick,

k = 34.61 W/m K (20 Btu/ft h �F), and hav. = 170.34 W/m
2 K

(30 Btu/ft2 h �F), ambient temperature is 310.78 K (100 �F),
he5 0.
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For an example of fin, the temperature difference be-

tween fin base and the surrounding is assumed as 80 K.

Based on the discrete model, fin length is divided into

1000 sections for calculation. Temperature distribution,

heat transfer coefficients, and heat transfer rate versus

relative location are graphically shown in Fig. 3. The ef-

fect of fin tip with or without convective condition is

also taken into account and shown in Fig. 3. It can be

observed from Fig. 3(a) and (b) that the lower tempera-

ture difference on fin tip is happened to forced convec-

tion. Based on Fig. 3(d), heat transfer coefficient along

fin length is a constant for forced convection. And rela-

tive to free convection, heat transfer rate dissipated by

fin under forced convection is greater shown in Fig.

3(e) and (f).

The thermal resistance, R, for any fin length, l, can

be obtained as if the parameters of fin volume, V, and

fin width, c, are given. Fig. 4 shows thermal resis-

tance, R, versus fin length, l, for variable heat transfer

coefficients along fin surface. Take an observation

of Fig. 4(a) for free convection mode, deviation of

thermal resistance between copper and Duralumin is

pronounced when fin length is becoming longer.

Meanwhile, the minimum value of thermal resistance

can be found from Fig. 4(a). The same results are

also occurred to forced convection mode shown in Fig.

4(b).

Fig. 5 shows temperature distributions calculated by

the present study which are also appeared in Kern and

Kraus [1]. The variable heat transfer coefficient is taken

as

h ¼ ðb þ 1Þhav:
x� �b

ð36Þ

l

Fig. 4. Dependence of thermal resistance, R, versus fin length, l, for

c = 0.15 m, h0 = 80 K, he5 0: (a) free convection, hav. = 1.42, m = 0.2
for cases 1–3 where b = 0 for constant h, b = 1 for linear

increase in h, and b = 2 for parabolic increase in h. The
variable heat transfer coefficient is also taken as

h ¼ hav:
1� ae�cðx=lÞ

1� ða=cÞð1� e�cÞ

� �
ð37Þ

for case 4 where a and c are dimensionless parameters

for exponential increase in h. Based on Fig. 5, tempera-

ture distributions for cases 2–4 are higher than that for

case 1. This result could be expected because that heat
the free convection and forced convection and V = 0.00015 m3,

5, n = 0.25; (b) forced convection, hav. = 25, m = 0, n = 0.2.



Fig. 6. Temperature distribution of longitudinal rectangular fin

for variable thermal conductivity, where l = 0.1016 m (4 in.)

long, c = 0.3048 m (1 ft) wide, d = 0.003175 m (0.125 in.) thick,

hav. = 170.34 W/m
2 K (30 Btu/ft2 h �F), and fin base temper-

ature is 366.33 K (200 �F), ambient temperature is 310.78 K
(100 �F), he5 0.
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transfer coefficients near the fin base region in these

cases are lower than that in case 1.

In this study, thermal conductivity, k, can be at-

tempted to be a variable property. Refer to Kern and

Kraus [1], thermal conductivity, k, is assumed to be

k ¼ k0 1þ e
h
h0

� �
ð38Þ
Fig. 7. The arrangements of materials for longitudinal fin: (a) arran

copper).
where k0 is thermal conductivity at T0, and e is the slope
of temperature-dependent thermal conductivity curve.

The effect of variable thermal conductivity is shown in

Fig. 6. The temperature distribution of variable thermal

conductivity is slightly higher than that of constant ther-

mal conductivity because thermal conductivity of the

former is always greater than that of the latter. It is

worth to mention here that the results shown in Figs.

5 and 6 are almost the same as Kern and Kraus [1] of

pages 339 and 343.

Although copper fin has good thermal dissipation

performance, the high density and cost of copper are

its disadvantage. From Fig. 7, a longitudinal rectangular

fin is composed of two materials, copper and Duralu-

min, for two arrangements. For the fixed profile and vol-

ume of fin with V = 0.000037 m3, c = 0.15 m, l = 0.2 m,
the results are expressed in Fig. 8 where the thermal

resistance, R, is observed with the proportion of volume

for Duralumin. Although proportion of volume for

Duralumin is the same, arrangement A can achieve bet-

ter performance for the cases of free convection and

forced convection.

In 1987, Ünal [13] quoted the previous studies and

applied an analytical expression for the one-dimensional

temperature distribution in a pin fin or a straight fin with

rectangular profile due to boiling heat transfer. Fin

is made of copper with thermal conductivity of 382

w/m K, and outer diameter of 0.635 cm. The heat trans-

fer coefficient is set as

h ¼ qjh
rj ð39Þ
gement A (copper–duralumin), (b) arrangement B (duralumin–



Table 5

Reference data from Ünal [13] of Eq. (39) for various types of

boiling

Type of boiling qj, rj

R113 Isopropyl alcohol

Nucleate boiling,

h < hd, j = 1
16.0, 2.0 28.0, 2.0

Transition boiling,

hd 5 h < hf, j = 2
3.0 · 109, �4.0 4.7 · 107, �2.5

Film boiling, hf 5 h, j = 3 194.0, 0 254.0, 0

hd, hf (K) 22.0, 71.0 22.7, 81.0

Fig. 9. Dependence of temperature gradient, �q0/ka, on slowly
raised base temperature difference, hb, for fin which is immersed
in R113 and Isopropyl alcohol at atmospheric pressure.

Fig. 8. Thermal resistance, R, of compound materials where

the fin parameters are V = 0.000037 m3, c = 0.05 m, l = 0.2 m,
he5 0, h0 = 80 K, and ambient temperature is 293 K. Thermal
conductivity of Duralumin is k = 164 W/m K at 293 K and

k = 182 W/m K at 373 K. Thermal conductivity of copper is

k = 382 W/m K at 293 K and k = 379 W/m K at 373 K.
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where qj, and rj, are related to hf, and hd given in Table
5, and h is temperature difference between fin surface
and saturated temperature. In Ünal [13], a quite reason-

able agreement is found between the analytical results

from theory and the experimental data. The application

of various types of boiling mode which occurs simulta-

neously at adjacent positions on pin fin surface can also

be done by the present study using discrete model. Rela-

tionships between fin base temperature in excess of sat-

urated temperature, hb, and base temperature gradient,
�q0/ka, are depicted in Fig. 9. This calculation was car-
ried out through 200 sections of discrete fin model. The

curve trend and boiling process are identical to those

from Ünal [13].
5. Conclusions

This paper presents a new approach to calculate tem-

perature distribution and heat transfer rate of a singular

fin where thermal properties such as heat transfer coeffi-

cient, thermal conductivity can be considered as the po-

sition-dependent or temperature-dependent function. By

using discrete model in the present approach, the recur-

sive formulas can be obtained for both conditions with

and without heat transfer on fin tip that can be easily

implemented into real applications. Meanwhile, several

examples including composite of a fin have been success-

fully simulated to demonstrate the validity of the present

approach. Finally, example including different types of

boiling modes which occur simultaneously at adjacent

positions on a pin fin surface is explored to demonstrate

the distribution of its temperature gradient on the fin

surface.
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